ALPHA HEATING AND BURNING PLASMAS IN INERTIAL CONFINEMENT FUSION

R. Betti¹, A.R. Christopherson¹, B.K. Spears², A. Bose¹, R. Nora², K.M. Woo¹, J. Howard¹, M.J. Edwards², J. Sanz³

¹Fusion Science Center and Laboratory for Laser Energetics, University of Rochester, Rochester, NY, USA
²Lawrence Livermore National Laboratory, Livermore, CA, USA
³Universidad Politécnica de Madrid, Madrid, Spain
betti@lle.rochester.edu

Estimating the level of alpha heating and determining the onset of the burning-plasma regime is essential to finding the path toward thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived connecting the burning-plasma regime to the yield enhancement caused by alpha-particle heating and to experimentally measurable parameters such as the fractional alpha energy or, equivalently, the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser-fusion experiments for both direct and indirect drive. The first onset of the burning-plasma regime inside the hot spot of current indirect-drive implosions on the National Ignition Facility requires a fusion yield of ~50 kJ.

This material is based upon work supported by the Department of Energy under Cooperative Agreements No. DE-FC02-04ER54789 with the Office of Fusion Energy Sciences (FSC), the National Nuclear Security Administration Award Number DE-NA0001944, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.